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This summary provides an overview of investigational antiviral

agents for influenza and of future directions for development of

influenza therapeutics. While progress in developing clinically

useful antiviral agents for influenza has been generally slow,

especially with respect to seriously ill and high-risk patients,

important clinical studies of intravenous neuraminidase inhibitors,

antibodies and drug combinations are currently in progress. The

current decade offers the promise of developing small molecular

weight inhibitors with novel mechanisms of action, including

host-directed therapies, new biotherapeutics and drug

combinations, that should provide more effective antiviral

therapies and help mitigate the problem of antiviral resistance.

Immunomodulatory interventions also offer promise but need to

be based on better understanding of influenza pathogenesis,

particularly in seriously ill patients. The development of

combination interventions, immunomodulators and host-directed

therapies presents unique clinical trial design and regulatory

hurdles that remain to be addressed.
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Introduction

The purpose of this summary is to provide an overview of

where we stand with respect to investigational antiviral

agents for influenza and of future directions for develop-

ment of influenza therapeutics. This commentary is based

on a presentation at the first isirv Antiviral Group meeting

in November 2011 and focuses primarily on clinical stud-

ies. It updates previous reviews1 and summaries based on

presentations by the author at international meetings in

2006,2,3 2008,4 and 2010.5 In addition, a number of review

articles that provide more detailed consideration of pre-

clinical and clinical aspects of influenza antiviral develop-

ment have been published recently by others.6–12

When considered historically, the development of the

first class of influenza antivirals, the aminoadamantanes

(amantadine, rimantadine), dates to nearly five decades ago

in the 1960s. Studies on ribavirin administered by various

routes and on intranasal interferons followed in the 1970s

and 1980s, respectively, but did not lead to approval for

influenza in most countries. Developmental work on the

second class of currently available agents, the neuramini-

dase inhibitors (NAIs) (zanamivir, oseltamivir), took place

during the 1990s, but overall progress on developing

clinically useful antivirals for influenza has been slow. In

addition, global circulation of influenza A(H3N2) viruses

resistant to the aminoadamantanes and of seasonal

A(H1N1) viruses resistant to oseltamivir,13,14 as well as

instances of oseltamivir resistance among the 2009 pan-

demic A(H1N1) viruses,15 are reminders of the very limited

size of our current influenza antiviral armamentarium.

However, recent pre-clinical studies have identified inter-

esting inhibitors of influenza virus replication, and several

of these have just entered or are expected to enter into

clinical development. Table 1 contains a representative list

of those which have shown activity either in animal models

of influenza or in some cases in infected humans. In addi-

tion to the viral targets of inhibitors with proven clinical

utility (i.e. M2, NA), a variety of targets and approaches

have been identified that could potentially be used for

developing new inhibitors. At meetings organised by the

National Institute of Allergy and Infectious Diseases in

200916 and 2011,17 investigators provided detailed updates

on many of these approaches. Substantial data have also

emerged in regard to using dual or multiple inhibitors in

combination, including one modality combining three

available agents, to increase effectiveness and manage the

problem of anti-viral resistance. With adequate funding
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and agreement on feasible clinical study pathways to

address regulatory concerns,18,19 the current decade offers

the promise of progress in developing agents with novel

mechanisms of action and of drug combinations that pro-

vide more effective therapies.

Antivirals in current clinical development

As shown in Table 2, there is a relatively short list of anti-

influenza agents in advanced clinical development and a

focus on NAIs, including three being developed for intrave-

nous (IV) administration. Intravenous peramivir and the

inhaled long-acting NAI laninamivir are already approved

in Japan, and peramivir also in South Korea. In addition,

several novel agents that retain activity against influenza

viruses resistant to the currently available classes of drug

are also under clinical study.

Neuraminidase inhibitors
A medical need for parenteral antivirals in treating severe

influenza has been recognised for many years. Intravenous

administration of NAIs like zanamivir and peramivir can

guarantee a rapid delivery of high-plasma drug levels in a

reliable fashion. Indeed, the maximum plasma concentra-

Table 1. Representative investigational anti-influenza agents and biotherapeutics with antiviral activity in animal models and ⁄ or humans

NA inhibitors (NAIs)

Peramivir (IV)*, zanamivir (IV)*, oseltamivir (IV)

A-315675 (oral)(120,121)

Long-acting NAIs (LANIs)

Laninamivir (topical)*

ZNV dimers (topical)*

Conjugated sialidase

DAS181 (topical)*

Protease inhibitors

Aprotinin (topical, IV) (122)

HA inhibitors and viral binding agents

Peptides- FluPep (topical) (123), Entry Blocker (topical) (124), HB80 ⁄ 36 (70), Flufirvitide (72,73)

Arbidol (oral) (125,126)

Cyanovirin-N (topical) (127)

Iota-carrageenan (topical) (128)

Pentraxin PTX3 (IP) (129)

Polymer bound 6¢ sialyl-N-acetyllactosamine (topical)(130)

CYSTUS052 (topical) (131)

Recombinant human galectin-1 (topical)(132)

Polymerase inhibitors

Ribavirin (oral, IV, inhaled)(3)

Favipiravir ⁄ T-705 (oral)*

Viramidine (oral) (133)

Antisense oligonucleotides (IV, topical) (134,135)

M gene

Antisense oligonucleotide (AVI-7100) (topical, IV)*

NP inhibitors

Nucleozin (IP) (136,137)

Antisense oligonucleotides (IV) (93,138)

Interferons (139–143)

IFN inducers- poly-ICLC (topical) (144,145); (107), nitazoxanide (PO)*

RIG-I activator (5¢PPP-RNA) (IV) (146)

Antibodies to viral proteins

Convalescent plasma, hyperimmune globulin*

Anti-HA, M2e, NA, NP*

Other topical agents

Cationic airway lining modulators (iCALM- topical)(16,147)

Surfactant nano-emulsions (topical) (148)

SOFA-HDV ribozymes targeting M, NS, NP (149)

Defective interfering particles (244 DI RNA in a cloned A/PR/8/34) (150)

*See text for discussion of selected agents and additional references.

IN, intranasal; IP, intraperitoneal; IV, intravenous; SC, subcutaneous.

Hayden

64 ª 2012 Blackwell Publishing Ltd



tions following IV zanamivir or peramivir are approxi-

mately 50-fold higher than those observed with dou-

ble-dose (150 mg) oseltamivir, although the plasma AUC

and minimum concentrations are closer.20 Whether these

pharmacologic differences will translate into greater antivi-

ral activity, less frequent resistance emergence, and

improved clinical outcomes remains to be determined.

While the available NAIs have inhibitory activity against

influenza A and B viruses, their antiviral spectra and

cross-resistance patterns vary by agent as they bind differ-

ently within the active site of the enzyme.11,13 In general,

zanamivir and laninamivir have similar profiles of suscep-

tibility. For example, the H275Y mutation confers high-

level resistance to oseltamivir carboxylate and reduced

susceptibility to peramivir in N1-containing viruses but

does not substantially diminish susceptibility to zanamivir

and laninamivir.21 Although peramivir has been reported

to inhibit a laboratory strain of influenza A(H1N1) with

H275Y,22 this particular mutation has emerged during

in vitro passage with peramivir and also during its

therapeutic use in an immunocompromised patient.23

Furthermore, IV peramivir has not shown antiviral effects

in treating infections due to oseltamivir-resistant

A(H1N1)pdm09 infections.24 Consequently, peramivir

would not be reliable in treating such resistant variants,

especially in immunocompromised hosts.

In adults with uncomplicated influenza, single IV doses

of peramivir (300 or 600 mg) were superior to placebo25

and comparable to a 5-day course of oseltamivir,26 but IV

peramivir was no better than oseltamivir in treating adults

infected with oseltamivir-resistant seasonal A(H1N1) virus

harbouring the H275Y mutation. Peramivir in daily IV

doses (200 or 400 mg once daily for 5 days) was compara-

ble to oseltamivir in hospitalised adults and did not select

for resistance,27 but a once-daily dose of 300 mg appeared

less effective than one of 600 mg.28 Peramivir was used on

both compassionate use and Emergency Use Authorization

bases in the United States for treating severe pandemic

2009 A(H1N1) illness,29 and controlled studies in hospita-

lised patients are in progress.

Intravenous zanamivir was used extensively on a com-

passionate use basis during the 2009 pandemic, particularly

for treating suspected or proven oseltamivir resistance,30–32

and a phase III trial is currently in progress to compare IV

zanamivir to oral oseltamivir in hospitalised patients. In a

small, phase II study,33 hospitalised patients with high fre-

quencies of severe illness (40% requiring mechanical venti-

lation), co-morbidities and prior oseltamivir therapy were

initiated on IV zanamivir at a median of 5 days after symp-

tom onset when they still had, despite oseltamivir treat-

ment, high levels of viral RNA in nasopharyngeal samples.

Zanamivir in this setting was temporally associated with

median viral RNA load reductions of nearly two log10 over

the subsequent 4–5 days of administration. It remains to be

determined whether even more rapid and profound anti-

viral inhibition might be possible with combinations of

antivirals.

Inhalation of the NAI laninamivir prodrug (termed CS-

8958) provides prolonged duration of antiviral activity in

animal models34 and prolonged presence of laninamivir in

humans.35 Laninamivir has an antiviral spectrum similar to

zanamivir21 and was found to be superior to oseltamivir in

treating children infected with oseltamivir-resistant seasonal

A(H1N1) virus.36 Single inhaled doses of laninamivir

(20 mg or 40 mg) were comparable to 5 days of oseltami-

vir in adults,37 although for unclear reasons it was not

superior in treating adults infected with oseltamivir-resis-

tant seasonal A(H1N1) virus. Inhaled dimers of zanamivir

are also in early clinical development.38,39

Conjugated sialidase
DAS181 is a novel fusion construct that includes the cata-

lytic domain from Actinomyces viscosus sialidase linked with

an epithelium-anchoring domain of human amphiregulin.40

This sialidase removes both the human-like a2,6- and

avian-like a2,3-linked sialic acids from cellular receptors,

Table 2. Selected influenza antiviral agents in advanced clinical development

Agent Viral target Sponsor Route Development phase

Zanamivir NA GSK IV Phase 3

Peramivir NA Biocryst, Shionogi IV Phase 3*�

Oseltamivir NA Roche IV Phase 3

Laninamivir (CS-8958) NA Biota, Daiichi-Sankyo Inhaled Phase 3*

Favipiravir (T-705) Polymerase Toyama Oral Phase 2-3

DAS181 HA receptor Nexbio Inhaled Phase 1-2

Nitazoxanide Possibly HA; IFN inducer Romark Oral Phase 2

*Licensed in Japan.
�licensed in South Korea.
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and hence, this agent has a broad range of activity for

influenza viruses, including those resistant to the amino-

adamantanes and NAIs. Resistance has been difficult to

select during in vitro passage and appears low-level (3- to

18-fold reductions in susceptibility).41 When administered

topically, DAS181 shows inhibitory activity in animal

models, including infections due to avian A(H5N1) and

A(H1N1)pdm09 viruses.42,43 DAS181 is also inhibitory for

parainfluenza viruses in vitro and in the cotton rat model44;

inhaled DAS181 has been given on compassionate use basis

to hematopoietic stem cell and lung transplant patients

with severe PIV infection with apparent benefit.45,46

In a phase II randomised, controlled trial (RCT) of this

agent for treating uncomplicated influenza,47 264 previ-

ously healthy adults with acute influenza were randomised

to receive treatment with a single 10-mg inhalation of

DAS181, once-daily inhalations for 3 days or placebo in a

double-blinded fashion. Throat gargle virus titres, the pri-

mary virologic end point, showed significantly greater

declines between the day of enrolment and the following

day in the active groups compared with placebo. This

accelerated clearance of pharyngeal virus continued to day

5 in the group that received DAS181 treatment over 3 days

but was not seen with a single administration. This trial

showed an encouraging antiviral effect, although this was

not associated with greater improvement in symptom reso-

lution. The reasons for this apparent discrepancy remain to

be clarified but may relate to the relatively mild influenza

illness in these patients. More work needs to be done to

assess the tolerability and efficacy of different topical for-

mulations of this novel host-directed inhibitor for potential

influenza management.

Favipiravir
Favipiravir, previously designated T-705, also has a unique

mechanism of antiviral action, so that it has inhibitory

activity against both NAI- and aminoadamantane-resistant

viruses.48,49 After undergoing intracellular metabolism

(ribosylation and phosphorylation), so that it has a nucleo-

side-like configuration, the triphosphate inhibits influenza

RNA polymerase.50 In vitro favipiravir is active against all

influenza types (A, B, C) at relatively low concentrations

(0Æ01–0Æ5 ug ⁄ ml), and higher concentrations also show

activity against some other RNA viruses.50 Oral favipiravir

is active in murine models of influenza, including lethal

A(H5N1),49 and shows synergistic interactions with osel-

tamivir.51 Favipiravir-resistant variants have not been

reported to date.

In a phase II randomised, double-blind controlled trial

in Japan, oral favipiravir (600 mg BID twice daily for 1 day

followed by 600 mg daily for 4 days) gave a similar mean

time to illness alleviation when compared to oseltamivir

(approximately 50 hours in both groups), whereas a lower

favipiravir dose was less effective.52 Pharmacokinetic studies

have shown that there is a need for both initial loading

doses and dose adjustments based on weight and perhaps

ethnicity. A large phase III treatment study of ambulatory

patients with uncomplicated influenza has been conducted

in Japan and other Asian countries. The time courses of

resolution of virus detection in the upper respiratory tract,

based on titres of infectious virus, were comparable in the

favipiravir (1200 mg once followed by 400 mg on day 1

and then 400 mg BID for 4 days) and oseltamivir groups.52

A phase II placebo-controlled RCT treatment study in

adults aged 55–80 years (favipiravir doses of 1000 mg BID

on 1 day and then 400 mg BID for 4 days versus 1200 mg

BID on 1 day and then 800 mg BID for 4 days) is in pro-

gress in the USA and other countries. While the clinical

efficacy and safety data remain to be published from these

studies, the available data show that favipiravir exerts anti-

viral effects in humans. These proof-of-concept findings

confirm that influenza viral polymerase is an important

target for antiviral development.

Nitazoxanide
Nitazoxanide, an oral antiparasitic agent, has interesting

immunomodulatory effects, including up-regulation of var-

ious interferon and interferon-inducible genes. In addition,

it has been reported to exert a specific influenza inhibitory

effect related to blockade of HA maturation.53 A recent

phase II RCT compared two different doses of nitazoxanide

(300 or 600 mg twice daily for 5 days) to placebo in ambu-

latory patients with suspected influenza.54 Among 257

influenza-infected persons, the time to alleviation of symp-

toms, similar to the end point that was used in the pivotal

NAI trials, was shorter by about 20 hours in the high-dose

group compared with placebo. This study also found evi-

dence for an antiviral effect with an approximate 1 log10

reduction in treatment day 1 virus titres in the high-dose

group compared with placebo. The 300-mg dose groups

showed intermediate effects. These interesting results need

confirmation, but given the extensive safety record of this

drug and its unique mechanisms of action, it might be par-

ticularly interesting for use in combination with other an-

tiviral agents.

Antibodies
Interest in antibody therapies of influenza has been stimu-

lated in part by observations from the use of convalescent

blood products as therapy in pneumonia patients during

the 1918 pandemic.55 Although these studies were not

RCTs and used various forms of blood products, a retro-

spective analysis found a very dramatic reduction in overall

mortality (crude case-fatality, 16% in treated versus 37% in

controls), particularly if the products were administered

within 4 days of a pneumonia diagnosis (19% compared to
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59% with delayed treatment).55 More recent anecdotal

reports of administering convalescent plasma for treatment

of severe avian A(H5N1)56 and 2009 pandemic A(H1N1)57

illness have also indicated benefit. A case–control study of

convalescent 2009 pandemic A(H1N1) plasma, selected to

have relatively high neutralising antibody titres, compared

outcomes in 20 patients given plasma and 70 controls, all

of whom were critically ill in intensive care (94% receiving

mechanical ventilation) and already receiving oseltamivir

therapy.57 The crude case-fatality was much lower with

convalescent plasma compared with no treatment (20%

versus 55%), and there was also a suggestion of some accel-

eration of virus clearance Because of these promising obser-

vations, a RCT is now being mounted through the NIAID

to determine whether addition of convalescent plasma adds

to oseltamivir therapy in seriously ill hospitalised patients.

This area has also received increased interest because of

the identification of conserved epitopes on the stem region

of the influenza haemagglutin (HA). The 16 HA subtypes

can be divided into two phylogenetic groups, designated

group 1 (containing H1, H2, H5, H9, and others) and

group 2 (containing H3, H7, and others). Hetero-subtypic,

neutralising monoclonal human antibodies that are thera-

peutically active after passive transfer in mice and ferrets

have been identified for both group 158–62 and more

recently group 2 HAs.63 In one case, an antibody that rec-

ognises HA subtypes in both groups to variable extent has

been reported.64 These antibodies target conserved sites on

the stem region and prevent the conformational changes in

HA needed for membrane fusion during replication.59,60

Several of these antibodies have gone into initial clinical

studies or are about to so. These broad spectrum neutralis-

ing anti-HA monoclonal antibodies and possibly ones

directed to other relatively conserved epitopes on M2e,65,66

which appear to mediate cellular cytotoxicity and require

intact Fc receptors,67 and possibly NA68 or NP,69 offer the

interesting prospect of combination therapies with small

molecular weight inhibitors and activity against influenza

viruses resistant to NAIs and ⁄ or aminoadamantanes.

In addition, the identification of highly conserved

regions in the HA stalk has led to the identification of pep-

tides that are able to bind potently and inhibit the fusogen-

ic activity of HA.70,71 One of these peptides, a 16-mer

called flufirvitide, has progressed into initial clinical

development.72,73

Antiviral combinations
The fact that combinations of influenza antivirals offer the

possibilities of enhanced potency and reduced resistance

emergence, as well as potential dose-sparing, is a well-

established concept. Work in this field started over 40 years

ago with an amantadine and interferon combination.74

About 25 years ago, the first triple drug combination

including interferon, rimantadine and ribavirin was

described.75 Subsequent pre-clinical studies have indicated

that if an influenza A virus is aminoadamantane-suscepti-

ble, synergistic interactions in vitro and increased survival

in murine models of influenza, including A(H5N1), are

observed when the aminoadamantane is combined with a

NAI or ribavirin.76–78 If a virus is aminoadamantane resis-

tant, no consistent benefit has been found in using the

aminoadamantane in combination with oseltamivir or riba-

virin. Ribavirin and oseltamivir show primarily additive

interactions in vitro and in murine models of

A(H5N1),78–80 whereas favipiravir and NAIs show dose-

related additive to synergistic effects for influenza A viruses

in vitro and on survival in mice.51 Combinations of osel-

tamivir and zanamivir showed concentration-related addi-

tive to antagonistic antiviral effects for A(H1N1)pdm09

viruses in vitro,81 whereas combinations of oseltamivir and

peramivir showed primarily additive activities in vitro and

in mice.82 These reports did not describe possible effects in

preventing resistance emergence, although such a benefit

was seen with aminoadamantane and oseltamivir combina-

tions for a range of aminoadamantane-susceptible influenza

A viruses.76

An increasing number of human studies have been done

to assess influenza antiviral combinations, most often

examining possible pharmacokinetic interactions and toler-

ability with currently available agents (e.g. oral oseltami-

vir + amantadine, oral oseltamivir + favipiravir, IV

peramivir + oral rimantadine, IV peramivir + oral oseltam-

ivir, IV zanamivir + oral oseltamivir).83–85 In general, these

combinations appear to be adequately tolerated without

important pharmacokinetic interactions. However, the

number of combinations that have been tested for efficacy

in humans in controlled trials is much more limited. One

placebo-controlled trial of nebulised zanamivir in hospita-

lised influenza A-infected patients, all of whom were given

rimantadine, was under-enrolled but found interesting

trends towards faster cough resolution and lesser risk of

rimantadine resistance emergence.86 In contrast, a recent

double-blind, placebo-controlled RCT highlighted the

potential for antagonism with dual NAI use, when it found

slower virologic and clinical responses in those given com-

bined therapy with oseltamivir and inhaled zanamivir com-

pared with oseltamivir alone in uncomplicated influenza.87

Consequently, combinations of zanamivir and oseltamivir

need further evaluation before being used in clinical

practice. As indicated previously, a controlled study of

convalescent 2009 pandemic A(H1N1) plasma combined

with oseltamivir therapy is ongoing in hospitalised patients

under NIAID sponsorship.

One triple drug regimen with three available agents

(amantadine, ribavirin, oseltamivir) showed synergistic

activity in vitro against not only influenza A viruses that
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are susceptible88 but also those resistant to the amantadine

or oseltamivir at baseline, including A(H1N1)pdm09

virus.81 This triple regimen, termed TCAD, was more

inhibitory than any of the dual combinations and was also

more effective at preventing resistance emergence during

in vitro passage.89 Murine model studies indicated that

amantadine contributes to the activity of TCAD and also

enhances the activity of oseltamivir in a dual combination,

in increasing survival following infection by amantadine-

resistant A(H1N1)pdm09 virus,90 although the mechanisms

have not been clarified. TCAD has been studied in a small

cohort of highly immunocompromised patients with influ-

enza at the Fred Hutchinson Cancer Centre in Seattle

[Janet Englund, presented at ICAR, April 2010]. Those who

received the triple regimen did not show the emergence of

new resistance mutations, and the regimen was reasonably

well-tolerated over 10 days and provided the target blood

levels of the individual drugs. A retrospective Korean study

of critically ill adults with influenza A(H1N1)pdm09 infec-

tion suggested trends towards lower 14-day (17% versus

35%; P = 0Æ08) and 90-day (46% versus 59%; P = 0Æ23)

mortality in TCAD recipients compared with those receiv-

ing oseltamivir monotherapy.91 A RCT trial sponsored by

NIAID comparing TCAD to oseltamivir monotherapy for

ambulatory high-risk patients is in progress.

There are a number of possibilities with regard to future

combinations of antivirals and of antivirals combined with

biotherapeutics including nitazoxanide and therapeutic anti-

bodies, as well as immunomodulators. Combining antivirals

with different mechanisms of action, for example, a polymer-

ase inhibitor-like favipiravir with a NAI, would be especially

interesting for treating more severe forms of influenza or infec-

tions in immunocompromised hosts. A large number of

potential immunomodulatory agents have been proposed for

adjunctive influenza treatment, many of which have shown

activity in animal models (Table 3). For example, one recent

report looked at a strategy of targeting sphingosine-1- phos-

phate (S1P) receptors with a sphingosine analog, designated

AAL-R, to inhibit various pro-inflammatory cytokine and

chemokine responses.92 In a murine model of A(H1N1)pdm09

infection, intratracheal application of AAL-R alone had a bene-

ficial effect (survival increased to 82% compared to 21% in

vehicle control and to 50% with oseltamivir), and when

combined with oseltamivir, 96% survival was observed.

Future directions

The following section provides a highly selected commen-

tary on novel approaches for developing more effective

influenza therapeutics. The reader is referred to the many

recent reviews regarding compounds in pre-clinical devel-

opment for established and alternative (e.g. polymerase,

nucleoprotein) targets.6–10,12,16,17

RNA inhibition
There have been a number of interesting preclinical reports

regarding antisense strategies and the use of siRNAs for

treating influenza93 and other respiratory viruses.94 One

that has moved forward clinically is AVI-7100, a

phosphorodiamidate morpholino oligomer containing three

modified linkages (PMOplus) that is designed to interfere

with the translation of both the M1 and M2 mRNAs of

influenza A virus (AVI Biopharma Inc, Bothell, WA, USA).

These two proteins are products of splice variants from the

same genome segment and share the same translation initi-

ation start site which is targeted by this oligomer. The

unique backbone structure allows for better delivery of the

antisense oligomer to infected cells, and the molecule has

been shown to have good activity against influenza A

viruses in both cell culture and in animal model studies. In

a ferret model of oseltamivir-resistant A(H1N1)pdm09

virus infection, this antisense molecule given either intra-

peritoneally or intranasally was associated with significant

antiviral effects in terms of reduced nasal and BAL virus

loads and lesser illness.95 Intravenous administration of this

molecule is now being examined in a dose-ranging phase 1

study. Depending on subsequent findings, this agent might

eventually be an option for use in combination with other

parenteral agents in more seriously ill patients.

Cellular targets
Another area of active investigation is the interaction

between influenza virus and various host cell factors, at both

the RNA and protein levels, to identify host cellular pathways

essential for virus replication that might be amenable to inhi-

bition, as a basis for treatment of acute infection.17 This

approach of host-directed therapies has also been promoted

because of the very low likelihood of resistance emergence

and its potential applicability to multiple respiratory viruses.

Influenza infection results in the activation of various

intracellular signalling responses, some of which the virus

uses to ensure efficient replication. Two particular path-

ways have been established as suitable targets for inhibition

of virus replication in murine models: the Raf ⁄ MEK ⁄ ERK

mitogenic kinase cascade (involved in nuclear export of

viral RNPs) and the IKK ⁄ NF-jB module, the activation of

which affects both several steps in replication and host

innate immune responses.12 Topical application of acetyl-

salicylic acid (aspirin), an inhibitor of IKK2, showed

antiviral effects in mice,96 although systemic aspirin was

associated with increased mortality in several influenza

animal models.97

Recently, multiple groups using different RNAi genome-

wide screening systems have published on the complexity

of these interactions and identified possible targets in influ-

enza, as well as several candidate inhibitors.98–101 Integrated

analysis of five screens determined that 85 cellular factors
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were identified in two or more of the influenza virus

screens, of which 50 were considered to have druggable

properties and 34 were also needed for influenza replica-

tion in vitro.102,103 In particular, these analyses found that

the vATPase and COPI complexes, the ribosomal mRNA

splicing and nuclear trafficking machinery, and kinase-reg-

ulated signalling are all required for efficient replication of

influenza A virus. Such cross-comparisons at the pathway

level rather than the gene level reveal more common fea-

tures that might provide potential targets for antiviral drug

development, either influenza-specific or broader in

spectrum.104 Of course, even in the context of short-term

Table 3. Examples of potential adjunctive influenza treatments tested in animal models or used in humans

Proposed agent Comment ⁄ Influenza model system

Glucocorticoids IN reduced inflammation in cotton rats (151), but systemic delivery ineffective for A(H5N1) in mice (152);

strong observational evidence for harmful effects in severe human influenza (see text)

Statins Oral rosuvastatin ineffective in murine model (153), but combined statin ⁄ caffeine IN or oral inhibited viral

replication (154). Reduced mortality reported in hospitalised influenza patients on prior therapy (see text)

Gemfibrizol IP therapy increased survival in mice (155)

Pioglitazone PPAR-c agonist beneficial for A(H5N1) in mice by decreasing tipDC trafficking to lung (156). Pre-treatment

with pioglitazone or rosiglitazone reduced influenza mortality in one murine model (157). AICAR

(aminoimidazole carboxamide ribonucleotide), an activator of AMP-activated protein kinase (AMPK) that

stimulates PPARs, is also active in mice (157).

PF-04178903 Prophylactic SC delivery of CCR2 blocker increased survival and decreased inflammatory markers in

mice (158)

AAL-R Topical sphingosine-1-phosphate receptor agonist active in mice alone and in combination with

oseltamivir (92)

Cyclo-oxygenase inhibitors Cox-2 inhibitor (celecoxib) beneficial with NAI for treating A(H5N1) in mice but ineffective alone (159).

Pre-treatment with Cox-1 inhibitor (SC-560) associated with hypothermia, weight loss, and increased

mortality in mice (160)

N-acetyl-cysteine+ Dose-related protection alone and with antivirals in mice (161); case report of possible benefit (162)

Chloroquine Ineffective in mice and ferrets (163), and in oral prophylaxis RCT in humans (164)

Bacterial lysate Prophylactic topical delivery increased survival and decreased virus titres in mice (106)

Erythromycin IP delivery increased survival and modulated immune measures in mice (165)

Ketotifen Oral mast cell degranulation inhibitor reduced inflammatory mediators in H5N1-infected mice and was

highly protective in combination with oseltamivir (166)

Pamidronate Increased survival and antiviral effects in humanised mice (167)

Allopurinol Oral allopurinol, an inhibitor of xanthine oxidase, and IV superoxide dismutase, an oxygen radical scavenger,

reduced mortality in mice (168)

Cocaine Modest antiviral effect after IP dosing in mice (169)

CpG oligonucleotides Topical TLR-9 agonist protective in mice (144)

3M-011 IN TLR7 ⁄ 8 agonist active in mice (170)

Lactobacilus pentosus

and plantarum

IN delivery of strain S-PT84 protective against influenza A challenge in mice (171). Oral prophylaxis with

killed strains showed dose-related immunostimulatory effects, reduced lung virus titres, and increased

survival in mice(172,173)

TJS-064 Oral traditional Chinese herbal therapy active in mice (174)

Maxingshigan-Yinqiaosan Oral traditional Chinese therapy comparable to oseltamivir in fever resolution in RCT in uncomplicated

influenza A(H1N1)pdm09 (175)

Nitric oxide inhalation No antiviral or beneficial clinical effects in mice (176)

Echinacea extract Oral use reduced weight loss and inflammation measures in mice (177)

PUL-042 Inhaled oligodeoxynucleotide and lipoprotein immunotherapeutic that protects against various pathogens

in mice (17)

Clara cell protein CC10 Topical dosing of recombinant human CC10 showed antiviral effects in cotton rats (17)

Gabexate mesilate Protease inhibitor that reduces cytokine responses in mice after IP dosing (178)

Green tea (catechins) Oral catechins and theanine prophylaxis RCT showed possible reduced influenza infections (179)

Chitin microparticles IN prophylaxis increased A(H5N1) survival in mice (180)

Isoquercetin Plant-derived polyphenolic with antiviral effects in mice after IP delivery (181)

Cannabis Oral D9-tetrahydrocannabinol increased virus loads and decreased inflammatory responses in mice (182)

Resveratrol Antiviral effects and increased survival of mice after IP delivery (183)

Slit2N IV treatment reduces endothelial hyper-permeability and mortality after H5N1 infection in mice (184).

IN, intranasal; IP, intraperitoneal; SC, subcutaneous; IV, intravenous.
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inhibitor administration, the targeting of cellular functions

raises important tolerability concerns that will require care-

ful safety studies in key patient populations.

Adjunctive therapies
Another area of considerable interest has been adjunctive

treatments for influenza, primarily those directed against

excessive pro-inflammatory host responses to infection.105

Animal model studies have identified a wide range of

agents with apparent beneficial effects (Table 3), but there

are few for which clinical data have been developed.

Depending on the particular model, agents with either

pro-106 or anti-inflammatory effects (Table 3) have been

reported as showing benefit. This in part relates to the

complexity of host responses leading to acute lung injury

and differences among model systems.107

The use of currently available drugs with immunomodu-

latory activity, well-characterised safety profiles, and low

production costs has been promoted as a possible treat-

ment strategy.108 Some epidemiologic studies have reported

substantial mortality benefits in patients taking statins who

were subsequently hospitalised for influenza109 or pneumo-

nia,110 but the results are not consistent across studies.111

The possible benefit of starting such drugs at the time of

influenza onset or hospitalisation have not been reported

to date, although one ICU-based, open-label RCT suggested

reduced risks of ventilator-associated pneumonia and mor-

tality associated with the addition of pravastatin therapy in

patients requiring mechanical ventilation.112 In contrast,

while systemic glucocorticoids have been frequently used

for treating influenza pneumonia and associated ARDS,

studies from the 2009 A(H1N1) pandemic have found that

glucocorticoids in such patients were associated with pro-

longation of virus replication, increases in secondary bacte-

rial and fungal infections and higher rates of mortality in

ICU patients.113–117 Consequently, one needs to be very

cautious in terms of the particular immunomodulatory

intervention, its therapeutic potency and its timing of use

in relation to the type and course of respiratory illness. For

example, studies of severe or fatal influenza viral pneumo-

nia during seasonal118 and pandemic 2009119 outbreaks

have found evidence for deficiency in interferon responses

that appear key to controlling virus replication. Conse-

quently, the possibility of using immunomodulatory inter-

ventions will need to consider the particular target

population and goal of either suppressing adverse host

responses or supplementing deficient ones, such that

clinical trials will be challenging.

Summary

In conclusion, it is clear that medical needs exist for more

effective therapies for severe influenza, particularly in those

who are hospitalised and in immunocompromised hosts.

Considerable progress has been made in the clinical devel-

opment of intravenous NAIs and to an increasing extent

other novel antivirals and biotherapeutics for influenza

management. In addition to optimisation of dosing regi-

mens of existing drugs, combination therapies offer great

promise going forward. Selective immunomodulatory inter-

ventions, in conjunction with antivirals to control

replication, are another promising area for investigation,

but the particular type(s) and timing of intervention need

to be based on a better understanding of disease pathogen-

esis. Detailed pathogenesis studies to improve understand-

ing of the relationships between virologic measures,

biomarkers and clinical outcomes are needed, as are strate-

gies for linking these findings to inform improved thera-

peutic monitoring approaches, particularly in seriously ill

patients. In addition, the study of combination interven-

tions, immunomodulators and host-directed therapies pre-

sents unique regulatory hurdles,18,19 and the pathways to

efficient study and eventual marketing of such interven-

tions require clarification.
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