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The development of drug resistance is a major drawback to any

antiviral therapy, and the specific anti-influenza drugs, the

neuraminidase (NA) inhibitors (NAIs), are not excluded from this

rule. The impact of drug resistance depends on the degree of

reduction in fitness of the particular drug-resistant virus. If the

resistance mutations lead to only a modest biological fitness cost

and the virus remains highly transmissible, the effectiveness of

antiviral use is likely to be reduced. This review focuses on the

fitness of oseltamivir-resistant seasonal H1N1 and H3N2, 2009

pandemic H1N1 (H1N1pdm09), and highly pathogenic H5N1

influenza A viruses carrying clinically derived NAI resistance-

associated NA mutations.
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Introduction

The proper use of neuraminidase inhibitors (NAIs) and

worldwide monitoring for the presence and spread of

drug-resistant influenza viruses are of the utmost impor-

tance. The clinical effectiveness of NAI antiviral treatment

depends on many factors, including (but certainly not

restricted to) the frequency of emergence of NAI-resistant

viruses and the overall biological fitness of viruses carrying

drug resistance–associated mutations. The segmented nat-

ure of the influenza virus genome and the high rate of mis-

incorporation per nucleotide site make the emergence of

resistant variants under selective drug pressure inevitable.

NAI-sensitive viruses may possess fitness superior, equal, or

inferior to that of NAI-resistant viruses. Drug-sensitive and

drug-resistant influenza variants can be clearly dominant

populations or can be a mixture of sensitive and resistant

clones that can overgrow in different directions; a key issue

being how successfully NAI-resistant viruses can compete

with wild-type viruses in the absence of selective drug

pressure.

Virus fitness can be defined as the summation of

parameters that quantify the degree of virus adaptation to

a given environment.1 The key words in this definition are

‘summation of parameters’, necessitating evaluation of

multiple parameters to determine virus fitness. Measuring

the influenza virus fitness as the virus replicates in natural

host organisms such as humans is difficult. Therefore,

establishing basic concepts requires a simplified model sys-

tem in which to test relevant variables. To gain insight into

the biological fitness of NAI-resistant influenza viruses, sci-

entists have applied different methods, which can be

subdivided into the following categories (including initial

confirmation of the resistance phenotype by phenotypic

and genotypic methods2–5): (i) kinetic parameters of the

neuraminidase (NA) in in vitro assays (relative NA activity,

Km, Vmax, Ki, phenotypic and genotypic stability);6–8 (ii)

quantifying virus fitness in vitro and ex vivo (plaque mor-

phology, virus yield in mono-infected cell cultures, replica-

tion kinetics under single- and multiple-cycle conditions,

growth competition assays);9–11 and (iii) infectivity and

transmissibility in animal models.12–15 BALB ⁄ c mice, Hart-

ley strain guinea pigs, and ferrets have been used to evalu-

ate the pathogenicity and transmissibility of NAI-resistant

influenza viruses. In addition, innovations in modeling

influenza virus infections in laboratory settings may more

accurately reflect virus replication in humans and facilitate

our understanding of the fitness of drug-resistant influenza

viruses. Such new methods include reverse-genetics tech-

niques,13 immortalized cell lines representative of the

human airway,11,16 virus competition assays in ex vivo sys-

tems5 and in animal models,17,18 and aerosol delivery of
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influenza virus to animals.19 When used together, the data

from these assays have proven to correlate with experimen-

tal, clinical, and epidemiologic data and partially explain

the emergence of NAI-resistant strains.

In patients undergoing treatment, NAI resistance muta-

tions have been found to be NA type- and subtype-specific

and drug-specific. Clinically derived influenza A NAI-resis-

tant variants of the N1 subtype most frequently carry

H274Y or N294S amino acid substitutions in NA (N2

numbering used throughout the text). Viruses of the N2

subtype have carried E119V or R292K substitutions, and

NAI-resistant variants of influenza B viruses have harbored

R152K or D198N substitutions in NA. The experimental

evidence suggests that amino acid substitutions at position

116, 117, 136, 247, 248, 252, or 276 in NA also reduce osel-

tamivir susceptibility of influenza viruses.20–23 The contri-

bution of these substitutions in clinical cases has not been

reported.

Oseltamivir-resistant seasonal H1N1 and
H3N2 influenza A viruses

Until the end of 2007, the available clinical data indicated

a low level of resistance to the NAI oseltamivir (<1% in

adults and 4–8% in children >1 year of age).2,24,25 How-

ever, a few studies reported an increased frequency of

oseltamivir-resistant variants (18% and 27%) in drug-

treated children.26,27 Experimental data also suggested that

the infectivity and replicative ability of oseltamivir-resis-

tant seasonal influenza H1N1 viruses with H274Y (H275Y

in N1 numbering) and H3N2 viruses with R292K NA

mutations were less than that of the wild-type virus.28,29

These findings led to the initial hypothesis that NAI-

resistant viruses would be less infectious, less transmissi-

ble in humans, and, thus, unlikely to be of clinical

consequence.

Importantly, further accumulation of experimental data

suggested that influenza viruses carrying NAI resistance–

associated NA mutations may not be attenuated. For exam-

ple, the fitness of NAI-resistant viruses can depend on the

NA subtype and location of the NA mutation(s) studied

(Table 1). A reduction in the transmissibility of drug-resis-

tant virus compared to that of wild-type virus was shown

for an A ⁄ New Caledonia ⁄ 20 ⁄ 99-like (H1N1) virus with the

H274Y NA mutation in a direct contact ferret model,30 for

an A ⁄ Sydney ⁄ 5 ⁄ 97-like (H3N2) influenza virus with the

R292K NA mutation,12 and for a recombinant A ⁄ Wu-

han ⁄ 359 ⁄ 95-like (H3N2) influenza virus with the R292K

NA mutation.13 However, an A ⁄ Wuhan ⁄ 359 ⁄ 95-like

(H3N2) virus with the E119V NA mutation was transmit-

ted as efficiently as the wild-type virus.13,30 In a guinea pig

model, recombinant H3N2 influenza viruses carrying the

E119V NA mutation or the double mutation, E119V and

I222V, were not transmitted as efficiently by respiratory

droplets as drug-sensitive variants (Table 1).31

The rapid dissemination of the influenza A ⁄ Bris-

bane ⁄ 59 ⁄ 2007-like (H1N1) viruses carrying the H274Y NA

mutation in the absence of antiviral drug pressure was

reported worldwide during the 2007–2009 seasons.32,33 It

was suggested that the H274Y NA mutation may not com-

promise viral fitness and transmissibility in this H1N1 virus

genetic background because of changes in NA enzymatic

properties8,34 and cell surface expression of NA.35 The

increased affinity of N1 NA of A ⁄ Brisbane ⁄ 59 ⁄ 2007-like

viruses for the substrate in NA activity assays was not com-

pensated for by an increased affinity of the H1 hemaggluti-

nin (HA) for sialic acid receptors.8 The eventual

dominance of viruses with the H274Y NA mutation may,

however, have been due to a better balance between their

HA and NA activities.8,34 Interestingly, the reduction of NA

activity conferred by the H274Y NA mutation has also been

associated with a reduced cell surface expression of NA,

possibly due to defects in the folding of NA or its transport

to the cell membrane.35 However, two other mutations in

the NA gene (V234M and R222Q) can provide a compen-

satory effect by increasing NA surface expression, and these

two substitutions did occur in the evolution of the H1N1

seasonal strain between 1999 and 2007.35 This study was

the first to indicate effects of the H274Y NA mutation on

protein expression and to propose the concept of ‘permis-

sive’ mutations for oseltamivir-resistant influenza viruses

from the perspective of gene evolution. A more recent

study has confirmed that substituting the identified ‘per-

missive’ residue (Q) for the ‘unpermissive’ residue (R) in

the double H274Y ⁄ Q222R mutant virus was associated

with a significant reduction of both affinity and activity of

the NA enzyme resulting in a virus with a reduced replica-

tive capacity in vitro and decreased replication in lungs of

ferrets.36

Oseltamivir-resistant 2009 pandemic H1N1
influenza viruses

Concern about the spread of oseltamivir-resistant

H1N1pdm09 influenza viruses prompted different groups

to address the issue of the viruses’ growth fitness in vitro

and virulence and transmissibility in animal models.37–45

One group of study results suggests that oseltamivir-resis-

tant H1N1pdm09 viruses are not attenuated in pathogenic-

ity or transmissibility and thus could spread among

humans without loss of fitness (Table 1).37–40 In studies

using clinically derived H1N1pdm09 viruses carrying the

H274Y NA mutation, oseltamivir-resistant virus was as vir-

ulent as its wild-type counterpart in mice and ferrets and

was transmitted to co-housed animals; respiratory droplet

transmission was not assessed in this research.37 Similarly,
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Kiso et al.,38 concluded that the H274Y mutant virus

undergoes aerosol transmission between ferrets, but there

was a 2-day delay in transmission of one of the mutant

strains.

Memoli et al.39 also reported that replicative fitness,

transmissibility, and virulence of NAI-resistant

H1N1pdm09 mutants were comparable to those of the

wild-type virus in the ferret model. These multidrug-resis-

tant viruses were isolated from immunocompromised

patients after just 9–14 days of NAI therapy, were resistant

to the aminoadamantanes and to oseltamivir and perami-

vir, and maintained their ability to cause disease in ferrets.

The resistant viruses replicated in both the upper and the

lower respiratory tracts of ferrets, with no differences in the

overall mean lung titers, duration of illness, or quality and

quantity of lung pathology.39

Seibert et al.40 used recombinant H1N1pdm09 viruses

differing by a single H274Y amino acid substitution to

show that the growth kinetics of the mutant viruses were

similar to those of the wild-type viruses and that they were

efficiently transmitted to guinea pigs and ferrets in both

contact and droplet transmission studies (Table 1). Fur-

thermore, when wild-type and H274Y mutant viruses were

put into direct competition in the upper respiratory tract

of guinea pigs, both viruses were detectable in three of four

exposed guinea pigs, suggesting that the resistant virus is

readily transmissible and equivalently fit.40 However, a

detailed analysis of their data reveals that one of the viruses

tested had a 2-day delay in transmission to half of the con-

tact-exposed guinea pigs. The other strain of H1N1pdm09

virus had a droplet transmission rate of 88% rather than

100%. The transmissibility and fitness of the H274Y

mutant viruses were further studied in the ferret transmis-

sion model, in which ferrets inoculated with a 1:1 mixture

of oseltamivir-sensitive and oseltamivir-resistant viruses

transmitted both wild-type and mutant viruses by contact

and aerosol transmission. These studies were performed

using a small sample size, but the fact that the H274Y

mutant viruses were transmitted by contact, by aerosol,

and in competition with the wild-type virus in ferrets

supports the conclusion made after analyzing the more

rigorous guinea pig transmission data.40

Table 1. Virus replication and transmissibility in animal models of oseltamivir-resistant seasonal H1N1 and H3N2, and H1N1pdm09 influenza A

viruses

Influenza virus NA mutation* Replication in vitro

Transmissibility in animal model

References

Ferrets Guinea pigs

Contact Aerosol Contact Aerosol

Seasonal H1N1

A ⁄ New Caledonia ⁄ 20 ⁄ 99 H274Y WT > R WT > R – – – 30

A ⁄ Brisbane ⁄ 59 ⁄ 2007-like WT = R WT = R – – – 15

Seasonal H3N2

A ⁄ Wuhan ⁄ 359 ⁄ 95-like E119V WT = R WT = R – – – 30

rgA ⁄ Wuhan ⁄ 359 ⁄ 95 WT = R WT = R – – – 13

rgA ⁄ Panama ⁄ 2007 ⁄ 99 WT = R – – WT = R WT > R 31

A ⁄ California ⁄ 7 ⁄ 2004-like E119V + I222V WT = R – – WT = R WT > R 31

rgA ⁄ Panama ⁄ 2007 ⁄ 99 WT = R – – WT = R WT > R 31

rg A ⁄ Wuhan ⁄ 359 ⁄ 95 R292K WT > R WT > R WT > R – – 13

A ⁄ Sydney ⁄ 5 ⁄ 97 WT > R WT > R WT > R – – 12

Pandemic 2009 H1N1

rgA ⁄ California ⁄ 04 ⁄ 2009 H274Y WT = R WT = R WT = R WT = R WT = R 40

rgA ⁄ Hansa Hamburg ⁄ 01 ⁄ 2009 WT = R WT = R WT = R WT > R WT > R 40

A ⁄ Quebec ⁄ 147365 ⁄ 2009 WT ‡ R WT = R WT ‡ R – – 37,42

A ⁄ Bethesda ⁄ NIH107-D0 ⁄ 2009 – WT = R – – – 39

A ⁄ Bethesda ⁄ NIH106-D0 ⁄ 2009 – WT = R – – – 39

A ⁄ Osaka ⁄ 180 ⁄ 2009 WT ‡ R – WT ‡ R – – 38

A ⁄ Vietnam ⁄ HN32060 ⁄ 2009 WT ‡ R – WT ‡ R – – 38

A ⁄ Denmark ⁄ 528 ⁄ 2009 WT ‡ R WT = R WT > R – – 41

rg, recombinant influenza virus; WT, wild-type virus; R, NAI–resistant virus; –, not determined; NA, neuraminidase.

*Amino acid numbering is based on that of N2 NA.

WT > R, fitness of the wild-type virus is greater than that of its oseltamivir-resistant counterpart; WT ‡ R, fitness of the wild-type virus is greater

than that of its oseltamivir-resistant counterpart only at initial stages of infection or transmission; WT = R, fitness of the wild-type virus is similar

to that of its oseltamivir-resistant counterpart; WT < R, fitness of the wild-type virus is less than that of its oseltamivir-resistant counterpart.
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In contrast, by studying a different pair of H1N1pdm09

wild-type and oseltamivir-resistant viruses, Duan et al.41

found that the resistant virus was not efficiently transmit-

ted between ferrets by the respiratory droplet route. Fur-

thermore, in co-infected animals, the wild-type virus

outgrew the resistant mutant and was uniquely transmitted

to contact animals (Table 1). The NA of the resistant virus

had reduced substrate-binding affinity and catalytic activity

in vitro, and the resistant virus exhibited slower initial

growth in Madin-Darby canine kidney (MDCK) and

MDCK-SIAT1 cells. This growth delay could have been

caused by the delayed release of progeny virions from the

host cell surface because of the reduced NA efficiency of

the resistant virus. Such a delay would not affect the final

virus yield in cell culture, but it could allow the host’s

first-line innate immune defense (e.g., macrophages or neu-

trophils) sufficient time to clear the virus from the respira-

tory tract of ferrets. The slightly reduced NA function and

delayed growth of the H274Y mutant virus may have been

more crucial in recipient ferrets that acquired the virus

from the environment via natural routes, than in donor

ferrets inoculated with a high dose of virus, because

delayed viral shedding or inefficient transmission was

observed in the recipient ferrets but not in the inoculated

donor ferret.41 The data reported by Hamelin et al.42 con-

firmed that transmission of the H274Y mutant

H1N1pdm09 virus by the airborne route (including aerosol

and large droplets) is somewhat compromised, which may

limit its widespread dissemination.

The novel NAI resistance-associated NA mutations,

I222R and S247N, identified in clinically derived

H1N1pdm09 viruses raised concerns about their effects on

virus fitness. The I222R mutant was less pathogenic in fer-

rets than was the wild-type H1N1pdm09 virus but had

similar replication ability in vitro and transmissibility in

ferrets.43 The results of another study showed that the

wild-type, the H274Y mutant, and the I222R plus H274Y

double mutant H1N1pdm09 viruses generated by reverse

genetics had similar infectivity and transmissibility in fer-

rets.44 The results of a study using reverse-genetics

H1N1pdm09 viruses showed that viruses carrying the

S247N NA mutation had reduced respiratory droplet trans-

missibility in guinea pigs, and the H274Y plus S247N dou-

ble mutant had more efficient transmission compared to

that of the wild-type virus.45 However, when the reverse-

genetics virus was rescued from another NA genetic

H1N1pdm09 virus background, the S247N mutant and the

H274Y plus S247N double mutant were less transmissible

in guinea pigs than their wild-type counterpart.45

Thus, the data on the fitness deficit of the NAI-resistant

mutants are so scarce that different groups have come to

different conclusions about its relevance. These differences

in interpretation might be partly due to the various investi-

gators’ use of H1N1pdm09 viruses with different genetic

backgrounds and of different experimental protocols, for

example, cage design, direction and strength of airflow,

number of animals used. Moreover, ferrets are outbred ani-

mals, so individual differences in the susceptibility to influ-

enza virus infection might add to variation in the data.

Additionally, the reduced transmissibility of the oseltami-

vir-resistant H1N1pdm09 viruses could be explained by a

number of factors. First, host physical exposure to virus is

directly affected by the quantity of virus shed into the envi-

ronment.46 Other host variables such as the extent of

inflammation could affect the amount of upper respiratory

secretions and, thus, the release of infectious respiratory

droplets. Second, efficient transmission to a naive host

requires not only exposure to virus but also successful virus

infection, effective replication, and simultaneous evasion of

the first line of host innate immunity.47 Anecdotal evidence

from the clinic shows that, in most instances, contempo-

rary drug-resistant variants of H1N1pdm09 were replaced

by drug-susceptible variants when the selective pressure of

oseltamivir was removed, suggesting that wild-type viruses

possess superior fitness in humans. Reports of reduced aer-

osol transmissibility of oseltamivir-resistant viruses are con-

sistent with the available epidemiologic data, which so far

do not show a predominance of resistance.48 However, the

isolation of community-transmitted, oseltamivir-resistant

H1N1pdm09 viruses49,50 suggests that such viruses retain a

certain level of transmissibility and may be more fit than at

the start of the pandemic, reinforcing the need for continu-

ous antiviral susceptibility surveillance. A conclusion from

these studies is that H1N1pdm09 viruses can accommodate

the single H274Y change without significantly impaired fit-

ness and transmissibility and may not require other per-

missive NA changes, the phenomenon reported for

A ⁄ Brisbane ⁄ 59 ⁄ 2007-like (H1N1) viruses carrying the

H274Y NA mutation.35

Oseltamivir-resistant highly pathogenic
H5N1 influenza viruses

Since the first human cases in 1997 in Hong Kong,51,52 spo-

radic human infection with highly pathogenic avian influ-

enza A(H5N1) virus has caused illness in more than 600

persons in 15 countries in Asia, the Middle East, Europe,

and Africa, with an overall mortality rate of approximately

60%.53 Because the seasonal influenza vaccine does not elicit

effective immunity against H5N1 influenza viruses, we must

rely on antiviral drugs to combat these deadly viruses; thus,

the acquisition of NAI resistance by H5N1 influenza viruses

is a serious public health concern. Oseltamivir-resistant

H5N1 viruses with the H274Y NA mutation have been

isolated from three patients during drug treatment or

prophylaxis,54,55 and those with the N294S NA mutation,

Consequences of oseltamivir resistance
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from two patients in Egypt.56 In addition, the highly

pathogenic A ⁄ Hanoi ⁄ 30408 ⁄ 2005(H5N1) influenza virus

that was isolated from a patient treated with oseltamivir had

a mixed oseltamivir-sensitive and oseltamivir-resistant pop-

ulation.55 Ten resistant clones that were randomly picked

from plaques of the virus in MDCK cells possessed either a

H274Y or N294S NA mutation.55

The available reports on the fitness of highly pathogenic

oseltamivir-resistant H5N1 viruses are limited and focused

on viruses of the two HA clades that have caused infection

in humans: clade 1 and clade 2.2 (Table 2).17,55,57–60 The

virulence of H5N1 viruses carrying either a H274Y or

N294S NA mutation was addressed using cell culture,

mouse, and ferret models. In a mouse model, recombinant

A ⁄ Vietnam ⁄ 1203 ⁄ 2004-like (H5N1) influenza viruses pos-

sessing either the H274Y or N294S NA substitution exhib-

ited lethality similar to that of the wild-type virus.57 For

the less-virulent A ⁄ Hanoi ⁄ 30408 ⁄ 2005(H5N1) oseltamivir-

resistant clone, the N294S NA substitution attenuated the

virus in mice, although the degree of attenuation was lower

than that caused by the H274Y NA substitution.59 Le and

collegues55 reported that the oseltamivir-resistant

A ⁄ Hanoi ⁄ 30408 ⁄ 2005 (H5N1) influenza virus with the

H274Y NA mutation was attenuated compared to the wild-

type virus (Table 2), as reflected by less-efficient replication

in the ferret upper respiratory tract. However, the

A ⁄ Hanoi ⁄ 30408 ⁄ 2005(H5N1) influenza virus does not

cause severe infection in ferrets inoculated with 2 · 105

PFU per animal.55 This mild infectivity is in contrast to the

virulence of human A ⁄ Vietnam ⁄ 1203 ⁄ 2004 (H5N1) virus

in ferrets. Inoculation with A ⁄ Vietnam ⁄ 1203 ⁄ 2004(H5N1)

virus with a dose as low as 10 EID50 resulted in severe

disease, and the deaths of two of three animals inoculated;

higher doses (102 or 103 EID50) caused high fever, substan-

tial weight loss, anorexia, and extreme lethargy, and were

lethal to all animals.61 Compared to the wild-type virus, a

recombinant A ⁄ Vietnam ⁄ 1203 ⁄ 2004-like (H5N1) virus with

the H274Y NA mutation replicated to similar titers in the

upper respiratory tract of ferrets and caused similar disease

signs; none of the animals survived when infected with

either oseltamivir-resistant or -sensitive viruses.17

In a ferret model, the N294S NA substitution may be

introduced less frequently than the H274Y substitution

under NAI selective pressure.60 However, H5N1 viruses

with the N294S NA substitution caused considerable path-

ogenicity in inoculated ferrets, underscoring the impor-

tance of monitoring the emergence of the N294S NA

mutation in circulating H5N1 viruses.60 In recombinant

clade 2.2 A ⁄ Turkey ⁄ 15 ⁄ 2006-like (H5N1) influenza viruses

possessing different NAI resistance–associated NA muta-

tions, viruses with the H274Y mutation conferred a high

level of oseltamivir resistance (mean IC50, >900-fold that

of wild-type) and possessed virulence similar to that of

the wild-type virus in ferrets. Virus with N294S conferred

a moderate level of oseltamivir resistance (mean IC50,

>60-fold that of wild-type) and was associated with signif-

icantly higher virus titers (P < 0Æ01) and more inflamma-

tion in the lungs of ferrets than the wild-type virus.58 In

a competitive ferret model in which animals were co-

inoculated with different ratios of oseltamivir-resistant

and oseltamivir-sensitive recombinant H5N1 viruses, the

H274Y NA mutation affected the fitness of the two H5N1

viruses differently: the fitness of resistant A ⁄ Viet-

nam ⁄ 1203 ⁄ 2004-like (H5N1) virus was undiminished as

compared to that of its drug-sensitive counterpart; yet,

the fitness of the resistant A ⁄ Turkey ⁄ 15 ⁄ 2006-like (H5N1)

virus was impaired.17 In addition, a I254V NA mutation

was identified in A ⁄ Vietnam ⁄ 1203 ⁄ 2004-like (H5N1), and

a E276A mutation was identified in A ⁄ Turkey ⁄ 15 ⁄ 2006-

like (H5N1) genetic backgrounds, which could potentially

Table 2. Fitness of highly pathogenic H5N1 influenza A viruses carrying H274Y and N294S NA mutations

H5N1 influenza virus (HA clade) NA mutation* Virus replication in vitro

Pathogenicity in vivo

ReferencesMice Ferrets

rgA ⁄ Vietnam ⁄ 1203 ⁄ 2004 (clade 1) H274Y WT = R WT = R WT = R 17,57,60

N294S WT = R WT = R WT = R

A ⁄ Hanoi ⁄ 30408 ⁄ 2005 (clade 1) H274Y – WT > R WT > R 55,59

N294S – WT > R WT > R

rgA ⁄ Turkey ⁄ 15 ⁄ 2006 (clade 2.2) H274Y WT = R – WT > R 17,58

N294S WT ‡ R – WT < R

rg, recombinant influenza virus; WT, wild-type virus; R, NAI–resistant virus; –, not determined; HA, hemagglutinin; NA, neuraminidase.

*Amino acid numbering is based on that of N2 NA.

WT > R, fitness of the wild-type virus is greater than that of its oseltamivir-resistant counterpart; WT ‡ R, fitness of the wild-type virus is greater

than that of its oseltamivir-resistant counterpart only at initial stages of infection or transmission; WT = R, fitness of the wild-type virus is similar

to that of its oseltamivir-resistant counterpart; WT < R, fitness of the wild-type virus is less than that of its oseltamivir-resistant counterpart.
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exert a compensatory effect on the fitness of H5N1

viruses carrying the H274Y NA mutation.17

One important conclusion from these studies is that a

particular NAI resistance-associated marker can cause dif-

ferent effects on fitness in different H5N1 virus genetic and

virulence backgrounds. Deficiency in NA function caused

by an NAI resistance mutation may not be deleterious for

highly pathogenic H5N1 viruses because of the extremely

efficient replication of these viruses.

Conclusion

The effects of NAI resistance NA mutations on the fitness

and transmissibility of influenza viruses may vary depend-

ing on several factors: location of the mutation (catalytic or

framework residue), NA type ⁄ subtype, virus genetic back-

ground, existence of permissive secondary NA mutations,

degree of NA functional loss, and an appropriate functional

NA–HA balance. In addition, differences in the host’s

immune response and genetic background can contribute

to such variation. No single measure can easily describe the

extent of fitness of influenza viruses carrying drug resis-

tance mutations. A summation of data on weight loss,

duration of illness, clinical score, pathologic changes, and

contact and aerosol transmissibility are required to more

accurately reflect the viral fitness deficit in animal models.

Understanding how drug resistance mutations affect the

frequency and mode of transmission is crucial to designing

public health measures aimed at controlling epidemics and

pandemics of influenza. Information from a variety of

experimental model systems should be combined to evalu-

ate the overall biological fitness of influenza viruses carry-

ing NAI resistance markers. Such knowledge clearly needs

to be revised specifically for each novel influenza virus that

emerges either as a seasonal strain by drift or as a pan-

demic virus by antigenic shift. Many other factors, includ-

ing heterogeneous mixing of populations and stochastic

effects, may influence whether a particular mutant virus

predominates in the population: therefore, the fitness defi-

cit must be determined for multiple strains of drug-resis-

tant virus to better predict or explain the epidemiologic

observations. The risk of emergence of drug-resistant influ-

enza viruses with undiminished fitness should be

monitored closely and considered in pandemic planning.
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